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Abstract:

Objective:

Sevoflurane, a volatile inhaled anesthetic, is used clinically for general anesthesia in humans. However, the mechanism of action of sevoflurane is
not fully understood. We used transcranial flavoprotein fluorescence imaging to visualize somatic sensory cortex responses to noxious stimuli in
mice without and with sevoflurane inhalation anesthesia at different concentrations to investigate sevoflurane effects in mice.

Methods:

A bipolar stimulating electrode was inserted into the left buccal region of the mouse, and changes in flavoprotein fluorescence intensity in the right
somatic sensory cortex were recorded before and after electrical stimulation. Measurements were taken while the mouse was awake, at four levels
of sevoflurane concentration (0.5%, 1.0%, 1.5%, and 2.0%; 5 min each), and at 10, 20, and 30 min after the end of sevoflurane inhalation.

Results:

During the awake period, flavoprotein fluorescence intensities in the right sensory cortex decreased after the onset of electrical stimulation, but
after 0.9 s, the fluorescence intensity began to increase, reaching a peak value at 2.1 s. This biphasic response significantly decreased at 0.5%
sevoflurane  and  completely  disappeared  at  sevoflurane  concentrations  above  1.5%,  and  restored  10  min  after  cessation  of  the  sevoflurane
inhalation. Furthermore, low concentrations of sevoflurane had little effect on the reduction of receptive fields or the conduction of excitation.

Conclusion:

We conclude that low concentrations of sevoflurane have little effect on the reduction of receptive fields or the conduction of excitation, and that
sevoflurane concentrations above 1.5% completely abolish the sensory cortex response elicited by noxious stimulation.
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1. INTRODUCTION

The  somatosensory  cortex  (SC)  is  the  region  of  the
cerebral cortex that processes sensations, such as pain [1]. For
physiological studies of brain function in laboratory animals,
electrophysiological  techniques  have  been  widely  used;
however, recent technological advances have led to the use of
optical imaging methods that enable spatiotemporal recordings

*  Address  correspondence  to  this  author  at  the  Faculty  of  Health  Sciences,
Uekusa Gakuen University, Ogura-cho, Wakaba-ku, Chiba 264-0007, Japan;
Tel: +81-43-239-2633; Fax: +81-43-233-9211; E-mail: s-kuwana@uekusa.ac.jp
#These authors contributed equally

[2  -  6].  Some optical  imaging  methods  use  voltage-sensitive
dyes, but these approaches are invasive and require the brain to
be exposed and stained. By contrast, flavoprotein fluorescence
imaging  (FFI)  does  not  require  exposure  of  the  brain  and
allows  transcranial  measurement  of  autofluorescence.
Flavoprotein,  one  of  the  intracellular  mitochondrial  electron
transport  proteins,  changes  from  reduced  flavin
mononucleotide  (FMNH2)  to  oxidized  flavin  (FMN)  when
oxygen  metabolism  is  enhanced  by  increased  intracellular
calcium  concentration  due  to  neuronal  activity  in  the  brain.
Oxidized flavin emits green autofluorescence when exposed to
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blue excitation light [7]. Methods using this endogenous signal
to identify excitatory areas in the SC that react to stimulation of
specific sites have been developed and applied to higher brain
research  [8  -  18].  In  most  of  these  studies,  urethane  or
ketamine-xylazine  mixtures  have  been  used  as  anesthetic
agents.

Sevoflurane  (sevo),  a  volatile  inhaled  anesthetic,  is
clinically  used  for  general  anesthesia  in  humans.  Sevo  has  a
minimum  alveolar  concentration  of  approximately  1.7%,  a
blood-gas  partition  coefficient  of  0.63,  moderate  anesthetic
potency, rapid induction of arousal, and low airway irritation
[19 - 21]. The sedative and analgesic mechanism of sevo is not
fully  understood.  Several  explanations  have  been  proposed
focusing on gamma-aminobutyric acid (GABA)A receptors [22
-  29].  In  a  study  examining  the  effects  of  sevo  on  cortical
activity in experimental animals, spontaneous activity detected
by electroencephalography was suppressed in a concentration-
dependent  manner  and disappeared at  high concentrations  of
inhaled  anesthetics,  but  evoked  potentials  to  visual  stimuli
remained  [30].  Using  FFI,  cortical  responses  to  tactile,
nociceptive,  visual,  and  acoustic  stimuli  under  urethane
anesthesia  have  been  reported,  but  such  responses  have  not
been reported for sevo anesthesia [8 - 18].

In  this  study,  we  visualized  SC  responses  to  electrical
stimulation  in  the  subcutaneous  buccal  region  of  mice  using
FFI and investigated the effects of sevo anesthesia.

2. MATERIALS AND METHODS

2.1. Animals

All animal experiments were approved by the Laboratory
Animal Care and Use Committee of Uekusa Gakuen University
(approval  number:  URAC19-06)  and  complied  with  the
Guidelines for Care and Use of Laboratory Animals released
by the National Research Council of the National Academies
(8th edition, revised 2011) and with the Guiding Principles for
Care and Use of Animals of the Physiological Society of Japan.
We used 11 adult male ICR mice (Sankyo Lab Service, Tokyo,
Japan) aged 8-12 weeks.

Surgical procedures were carried out under sevo anesthesia
with continuous inhalation at 3.0%, followed by subcutaneous
injection of lidocaine hydrochloride jelly (2.0%). The skull was
exposed, and liquid paraffin was applied to prevent the drying
of the skull surface. A chamber frame was bonded, fixed to the
mouse skull with dental resin cement (Sun Medical CO, Shiga,
Japan),  and  attached  to  a  head  fixation  device  (MAG-2,
Narishige,  Tokyo,  Japan).  A  bipolar  electrode  was  inserted
under  the  skin  of  the  left  buccal  region  of  the  mouse.  After
confirming  that  the  mouse  was  awake  by  interrupting  sevo
anesthesia,  changes  in  flavoprotein  fluorescence  induced  by
electrical  stimulation  of  the  left  buccal  subcutaneous  region
were recorded using a MiCAM02 camera (Brainvision, Tokyo,
Japan) (Fig. 1). Electrical stimulation was performed for 0.5 s
with 1 ms duration, 1 V intensity, and 20 Hz frequency using
an  electrical  stimulator  (SEZ3100,  Nihon  Kohden,  Tokyo,
Japan).  The body temperature of the mice was maintained at
37°C using a thermal pad, and the experiment was performed
with spontaneously breathing mice.

Fig. (1). Schematic of the experiment. A mouse with its skull exposed
was fixated so that the right somatosensory cortex was centered on the
upper surface, and the animal was supplied with sevoflurane and air. A
bipolar electrode was inserted into the left buccal region of the mouse
to provide electrical stimulation. Cortical images were recorded by a
cooled CCD camera system using an upright fluorescence microscope
with an LED lamp.

2.2. Flavoprotein Fluorescence Imaging

We  performed  the  same  FFI  experiment  previously
reported by Shibuki et al. [9], and confirmed the occurrence of
fluorescence changes in the right SC following stimulation of
the left buccal region of mice (Figs. 1 and 2A). When the SC
was exposed to blue light (450-490 nm) from a high-intensity
LED light source (LEX2-B, Brainvision),  the cortical  tissues
emitted  green  autofluorescence  (500-550  nm),  which  was
recorded by a cooled CCD camera system (MiCAM02) using
an upright fluorescence microscope (THT, Brainvision) with an
objective (magnification: 1.0) (Fig. 1).

Optical  imaging and data  analysis  were  performed using
the  MiCAM02  hardware  and  software  package  (BV  Ana:
Brainvision). The camera captured images of 96 × 64 pixels (6
mm  ×  5  mm).  Total  frame  acquisition  was  set  to  512.  The
sampling time was 10 ms/frame; therefore, the total recording
time was 5120 ms. The acquisition was triggered by electrical
stimuli.  The trigger  signal  was  activated  after  one-quarter  of
the  total  recording  time,  corresponding  to  1280  ms  after
starting acquisition.  To improve the signal-to-noise ratio,  we
averaged signals detected in 10 consecutive trials at 0.15 Hz.
Data  were  displayed using  a  3  ×  3  pixels  spatial  filter  and  a
25%  dF/Fmax  filter  (Fig.  2A,  B).  Measurements  were  taken
while  the  mouse  was  awake,  at  four  levels  of  sevo
concentrations (0.5%, 1.0%, 1.5%, and 2.0%; 5 min each), and
at  10,  20,  and  30  min  after  the  end  of  sevo  inhalation.  To
compare  the  effects  of  different  sevo  concentrations,  we
measured  the  maximum  flavoprotein  fluorescence  intensity
(peak  ΔF/F),  activated  area  at  the  time  of  maximum
fluorescence  increase  (activated  area),  the  difference  in
fluorescence decrease at the end of electrical stimulation (ΔF/F
at the end of stim), and time from the start of stimulation to the
point of maximum flavoprotein fluorescence (latency) (Fig. 2).
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Fig.  (2).  Flavoprotein  fluorescence  imaging  of  the  cortical
somatosensory cortex in awake mice. A: Schematic of the recording
area (a) and imaging of flavoprotein fluorescence responses (b). The
right somatosensory cortex responds to electrical stimulation of the left
buccal  region.  B:  To  compare  sevoflurane  concentration  effects,  we
measured  (1)  maximum  flavoprotein  fluorescence  intensity  (peak
ΔF/F), (2) activated area at the time of maximum fluorescence increase
(activated area), (3) difference in fluorescence decrease at the end of
the electrical stimulation (ΔF/F at the end of stim), and (4) time from
the  start  of  stimulation  to  the  point  of  maximum  flavoprotein
fluorescence  (latency).  stim,  stimulus.

2.3. Data Analysis

All  data  between  the  awake  state  and  other  time  points
were  tested  using  Dunnett’s  method  following  the  one-way
ANOVA;  p<0.05  was  considered  to  indicate  statistically
significant differences. Data are presented as mean ± standard
deviation (SD).

3. RESULTS

Electrical  stimulation  of  the  left  buccal  subcutaneous
region  of  mice  elicited  a  biphasic  change  in  flavoprotein
fluorescence  intensity  in  the  right  SC  barrel  field  with  a
decrease immediately after the stimulation, followed by a slow
increase (Fig. 2). A typical example during the awake period is
shown  in  Fig.  (2).  After  electrical  stimulation,  flavoprotein
fluorescence intensity changed in the SC barrel field and then
spread throughout the SC (Fig. 2A).

Fig. (2B) shows that the flavoprotein fluorescence intensity
in  the  right  SC  decreased  after  the  onset  of  electrical
stimulation, but after 0.9 s, the fluorescence intensity began to
increase, reaching a maximum value at 2.1 s.

At the sevo 0.5% level, the biphasic change in flavoprotein
fluorescence intensity in the SC was decreased compared to the

awake state; at sevo 1.5% and sevo 2.0%, the observed changes
in fluorescence intensity in the SC disappeared; at 10 min after
cessation of sevo inhalation, the biphasic signal returned; and
20 and 30 min after stopping the anesthetic drug, the change in
flavoprotein fluorescence response was restored (Fig. 3).

Fig.  (3).  Flavoprotein  fluorescence  responses  in  the  somatosensory
cortex elicited by electrical stimulation at different inhaled sevoflurane
concentrations.
(a)  Flavoprotein  fluorescence  imaging  at  1990  ms  from  the  start  of
stimulation  and  (b)  temporal  change  in  ΔF/F  at  each  sevoflurane
concentration. A: Awake state. B: Inhalation of sevoflurane 0.5%. (c):
Inhalation  of  sevoflurane  1.5%.  (d):  10  min  after  cessation  of
sevoflurane  inhalation.  (e):  20  min  after  cessation  of  sevoflurane
inhalation. The biphasic change in flavoprotein fluorescence intensity
in  the  SC decreased  at  the  sevoflurane  0.5% level,  compared  to  the
awake state, disappeared at the sevoflurane 1.5% level, and restored at
10 min after cessation of sevoflurane inhalation. stim, stimulus.

Peak ΔF/F was 0.79 ± 0.59% in mice that were awake and
it decreased to 0.45 ± 0.49% and 0.19 ± 0.30% at sevo 0.5%
and  sevo  1.0%  levels,  respectively.  No  stimulation-induced
changes in flavoprotein fluorescence intensity were observed
for sevo concentrations of 1.5% and 2.0%. After cessation of
the sevo inhalation, peak ΔF/F increased to 0.47 ± 0.09% after
10 min, 0.60 ± 0.32% after 20 min, and 0.70 ± 0.39% after 30
min.  Peak  ΔF/F  values  significantly  differed  between  the
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awake  state  and  sevo  1.0%  level  (Fig.  4A).

Fig. (4). Peak ΔF/F, activated area, ΔF/F at the end of the stimulation,
and latency at different concentrations of inhaled sevoflurane. (a): Peak
ΔF/F  is  significantly  different  between  the  awake  state  and  the
sevoflurane  1.0%  level.  No  stimulation-induced  changes  in
flavoprotein  fluorescence  intensity  can  be  observed  at  sevoflurane
1.5% and 2.0% levels.  (b):  Activated area seems to decrease during
inhalation  of  sevoflurane  0.5%  and  1.0%,  but  differences  are  not
significant. Activated areas disappear during inhalation of sevoflurane
1.5% and 2.5%. (c): Decreased ΔF/F at the end of the stimulation also
disappears during inhalation of sevoflurane 1.5% and 2.0%. (d):  No
significant differences were found for the latency. ** p<0.01, * p<0.05.
Data are presented as mean ± SD.

The  activated  area  tended  to  decrease  from  the  time  the
animal was awake to the time of sevo 0.5% and 1.0%, but this
value increased from 10 min to 20 min and 30 min after sevo
cessation.  Significant  differences  were  found  between  the
awake state and sevo 1.5% concentration, as well as between
the awake state and sevo 2.5% level (Fig. 4B).

The values for ΔF/F at the end of stim were -0.66 ± 0.58%
at the awake state, -0.28 ± 0.21% at sevo 0.5%, -0.26 ± 0.27%
at sevo 1.0%, -0.56 ± 0.18% at 10 min off, -0.50 ± 0.13% at 20
min off,  and -1.11 ± 1.30% at  30 min off.  The values  in  the
awake  state  were  significantly  different  from  those  at  sevo
1.5% and sevo 2.0% levels (Fig. 4C).

The latency was 2151 ± 775.9 ms at the awake state, 1679
± 709.2 ms at sevo 0.5%, 2433 ± 782.4 ms at sevo 1.0%, 2259
± 922.7 s at 10 min off,  2518 ± 984.8 ms at 20 min off,  and
1597 ± 677.1 ms at 30 min off. No significant differences were
found for the parameter latency (Fig. 4D).

4. DISCUSSION

In  this  study,  we  measured  biphasic  changes  in
flavoprotein  fluorescence  intensity,  which  is  thought  to  be
correlated with pain perception in the SC barrel field induced
by electrical stimulation of the buccal subcutaneous region of
mice. With increasing sevo concentrations, the peak value of
the  stimulus-induced  flavoprotein  fluorescence  change
decreased at sevo 0.5% to about 57% and at sevo 1.0% to about
24% of the value in awake mice. Following discontinuation of
sevo administration, this parameter was restored to about 60%
after 10 min and nearly fully recovered after 30 min. During
the awake period, the flavoprotein fluorescence intensity in the
right SC decreased after the onset of electrical stimulation, and
after  0.9  s,  the  fluorescence  intensity  began  to  increase,
reaching  its  maximum  at  2.1  s.

Aerobic energy metabolism is important for brain activity,
and mitochondria are abundant in brain tissue. The activation
of  aerobic  energy  metabolism  and  the  resulting  oxidation  of
mitochondrial  flavoproteins  are  mechanisms  underlying  the
observed autofluorescence responses. These well-known facts
suggest that FFI faithfully reflects neural activity in vivo [8]. In
mice, FFI can be useful because it allows transcranial imaging,
causes  less  surgical  damage,  and  is  more  likely  to  produce
stable  recordings  [11].  However,  fluorescence  responses  of
flavoproteins  have  a  time  lag  because  various  metabolic
reactions are involved in changes in flavoprotein fluorescence.
The  initial  response  within  0.5-0.8  s  after  the  onset  of
stimulation is not affected by blood vessels, but the latter half
of  the  fluorescence  response  is  influenced  by  hemodynamic
changes  [9,  31].  In  the  present  study,  we  continuously  took
recordings from the awake state over anesthesia with various
sevo  concentrations  to  the  recovery  period;  therefore,  the
recordings may have been affected by oxygen consumption and
hemodynamics due to neural activity.

The  biphasic  response  suggested  the  percentage  of
oxidized flavoproteins to be decreased during or immediately
after  stimulation  and  increased  thereafter.  Chisholm  et  al.
reported  that  hypoxia  induced  a  characteristic  change  in  the
cortex  with  the  preservation  of  oxidized  flavoprotein  in  the
periarterial  tissue  and  reduced  flavoproteins  in  distal  tissues
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and near veins [32]. Shibuki et al. conducted experiments using
FFI to identify the sites in the SC that respond to tactile, visual,
and  auditory  stimuli  in  rodents,  and  reported  temporospatial
recordings  of  regions  with  excitation  in  the  SC  [9].
Furthermore,  they  showed  the  activation  of  aerobic  energy
metabolism  and  the  resulting  oxidation  of  mitochondrial
flavoproteins  to  be  the  mechanisms  underlying  the
autofluorescence  responses.  In  in  vivo  experiments,  the
fluorescent  responses were emphasized by the hemodynamic
responses [8]. Decreases in flavoprotein fluorescence intensity
after stimulation have been reported in certain layers and under
anoxic conditions [32 - 34]. Tsytsarev et al. tested in vivo the
cell-penetrating  phosphorescent  oxygen-sensitive  probe
NanO2-IR  and  reported  that  whisker  stimulation  led  to  a
decrease in O2, followed by an increase in O2 in the SC [35].
The findings of the present study suggest that the percentage of
reduced  flavin  increases  during  and  immediately  after
stimulation  because  O2  is  utilized  as  neurons  become active,
followed by  an  increase  in  the  percentage  of  oxidized  flavin
due to increased blood flow and other factors.

Urethane  or  ketamine-xylazine  have  been  used  as
anesthetics in studies examining cortical responses to sensory
stimuli in laboratory animals. Under these anesthetics, cortical
activity responses elicited by various sensory stimuli remain [2
- 6, 8 - 18]. In the present study, the changes in flavoprotein
fluorescence in the cortex induced by stimulation of the buccal
area  of  mice decreased by a  sevo concentration of  1.0% and
completely  disappeared  at  concentrations  of  1.5% or  higher,
but they restored at 10 min after stopping sevo administration.
Arena  et  al.  reported  that  sevo  reduced  cortical  spontaneous
activity  in  a  dose-dependent  manner  and  the  dose-dependent
potentiation induced by sevo gradually converted into a dose-
dependent  depression  with  increased  stimulation  frequency
[30]. This suggests that an increase in external stimuli not only
abolishes  the  capacity-dependent  facilitation  of  sensory
responses but also underlies the capacity-dependent inhibition
by  sevo.  In  our  study,  the  decrease  in  active  area  and
prolongation of latency in response to stimuli seen with sevo
1.0% inhalation was aggravated by sevo 1.5% and sevo 2.0%
administration, leading to the complete abolishment of signal
changes. This suggests that low sevo concentrations have little
effect on the reduction of the stimulus-responsive SC receptive
field  or  on  the  conduction  of  excitation;  however,  when  a
certain  concentration  is  reached,  a  conduction  block  is
presumed  to  occur.

Although many of the mechanisms of action of anesthetics
remain  unclear,  GABAA  receptors  are  involved  in  the
pharmacological  effects  of  many anesthetics.  Sevo and other
volatile inhaled anesthetics act on inhibitory GABAA receptors
and  directly  inhibit  glutamate  receptors  [24  -  27].  GABAA

receptors  are  the  most  abundant  inhibitory  neurotransmitter
receptors in the brain. Drexler et al.  reported that sevo alters
cortical  down-states  and  that  administration  of  the  GABAA

receptor antagonist bicuculline attenuates the effects of sevo in
in  vitro  experiments,  suggesting  that  sevo  enhances  GABAA

receptor-mediated  inhibition  at  low  concentrations  but
maintains  cortical  activity  [36].  This  supports  our  proposed
explanation of the observed sevo effects.

In  this  study,  we  did  not  perform  additional
pharmacological  experiments,  including the determination of
the  long-lasting  effect  of  sevo;  however,  pharmacological
experiments  using  FFI  may  illuminate  the  mechanisms
underlying sevo effects in vivo.  The use of calcium imaging,
which  has  a  higher  time  resolution  than  FFI  [17],  in
combination  with  FFI,  may  also  help  to  elucidate  the
mechanism  of  action  of  anesthetics.

CONCLUSION

In  summary,  we  used  FFI  to  transcranially  visualize  SC
responses  to  painful  stimuli  in  mice  without  and  with  sevo
inhalation anesthesia at four different concentrations. We found
that,  unlike  urethane  or  ketamine-xylazine,  sevo  completely
abolishes the SC response elicited by noxious stimulation. Our
results  suggest  that  sevo  blocks  the  conduction  of  sensory
information. Since the mechanism of action differs depending
on the  type of  anesthesia,  it  will  be  necessary to  continue to
study  the  mechanism  of  action  of  various  anesthetics  from
various angles using FFI.
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