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Abstract: Despite the clinical demand, current uses of local anesthetics do not allow selective blockade of nociceptive 

fibers. Regional anesthesia produces an analgesic effect accompanied with undesired side effects due to block of motor, 

non-nociceptive sensory and autonomic fibers. These side effects limit the clinical use of local anesthetics and affect the 

recovery and rehabilitation period after surgical procedures. Therefore one main goal of research in the field of regional 

anesthesia is selectively targeting nociceptive fibers. Recent studies describing the role of nociceptive specific sodium 

channels in generation and propagation of nociceptive signals make these channels ideal targets for pain selective 

blockade. In addition, novel methods of targeted delivery of charged local anesthetics selectively into nociceptors provide 

another potentially successful approach for c-fiber specific nerve block. This review summarizes currently on-going 

studies on several promising targets and methods to achieve pain selective anesthesia. 

INTRODUCTION 

 Local anesthetics (LAs) are frequently used in clinical 
practice when anesthesia of limited body area is desired. LAs 
block voltage-gated sodium channels, thereby preventing 
generation of action potentials and their propagation along 
the nerve [1]. However, LAs block sodium channels not only 
in sensory fibers but also in motor and sympathetic fibers. 
To date, no agent or method translatable into current clinical 
practice has been shown to elicit usable pain-selective nerve 
blocks. In general, clinicians agree that there is a slight but 
detectable difference among local anesthetics in motor vs. 
sensory blockade; e.g., bupivacaine in general has somewhat 
more sensory/nociceptive block than motor block, while 
etidocaine confers more motor than sensory block. The 
following pages review treatments that are far more selective 
or exclusively pain-fiber selective than currently used clinical 
and experimental local anesthetics. Nociceptive-selective 
nerve block has been attempted with concentrations of LAs 
that are high enough for only certain nerve fibers (smaller-
diameter, thinly myelinated A-delta or unmyelinated C-
fibers), but not for others (larger-diameter, myelinated nerves 
such as A-beta). Nevertheless, studies have demonstrated 
that nerve block does not always follow this size principle, 
and motor fibers are blocked before nociceptive fibers [2]. 
Therefore, complete pain relief is generally accomplished 
only with simultaneous low-threshold sensory sympathetic 
and motor blockade, leading to numerous adverse effects. 
Improving the sensory-selectivity of LAs will clearly extend 
their clinical utility. (Of note, especially in the clinical 
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anesthesia literature, the terms “sensory-selective” and 
“differential block” are commonly used and are roughly 
interchangeable with “pain-selective” and “nociceptor-
selective.”) We review novel methods to achieve nociceptor-
selective peripheral nerve blockade. 

 Considering the properties of pain-specific peripheral 
nerve fibers is fundamental in exploring differential nerve 
blockade. Noxious stimuli are received and interpreted by 
selective-type peripheral sensory neurons, i.e. nociceptors. 
Nociceptors are unique among other peripheral neurons for 
their expression of high-threshold transducer receptors that 
transform noxious chemical, thermal, and/or mechanical 
stimuli into electrical signals [3]. Those receptors include 
channels from the transient receptor potential family; 
TRPV1, V2, M8, A1, and the purinoreceptor P2X [4-6]. 
TRPV1, V2, and M8 are involved in perception of heat [4, 
5, 7, 8], and A1 is involved in sensing various chemical 
irritants [9]. Purinoreceptor P2X is activated by the presence 
of ATP [10]. The activation of these receptors results in ion 
influx and depolarization of the membrane of the nerve 
terminal [11]. If the depolarization is strong enough to 
activate sodium channels, it will result in action potentials 
that propagate along A delta and C fibers. These nociceptors 
express a unique repertoire of sodium channels including 
both TTX-sensitive and -resistant subtypes. A-delta fibers 
are associated with transmission of superficial, sharp pain. 
The C fibers are associated with transmission of dull, 
throbbing pain [12]. It is now agreed that within the 
peripheral nervous system C-fibers express TRPV1and 
Na(v)1.7 almost exclusively [13-17]. Therefore this review 
focuses mainly on TRPV1 and Na(v)1.7.  

TRPV1 CHANNELS 

 The vanilloid receptor subtype 1 (VR1) (TRPV1) is a 

member of the superfamily of transient receptor potential ion 
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channels [4]. TRPV1 is expressed peripherally in primary 

afferent nociceptors [13] and is stimulated and sensitized by 

noxious heat, protons, and various inflammatory mediators 

that comprise the ‘inflammatory soup' including bradykinin, 

adenosine triphosphate and arachidonic acid derivatives such 

as prodtagrandings and leukotriene B4 [3]. TRPV1 is a 

nonselective cation channel that permits calcium and sodium 

ions to pass through the membrane of the primary sensory/ 

nociceptive neurons, causing membrane depolarization and 

leading to nociceptive responses. However, initial excitation 

of the nociceptive neuron by capsaicin is followed by a long 

refractory state, including desensitization of the receptor or 

channel,changes in axon terminals, mitochondrial swelling, 

release of calcitonin gene-related peptide, displacement of 

adenosine triphosphate by the calcium sensor calmodulin, 

depletion of substance P, and, at higher concentrations, the 

possibility of axonal atrophy and terminal degeneration [18-

20]. This desensitization and the longer-lasting atrophic/ 

degenerative changes led to clinical use of capsaicin in 

topical ointments to relieve neuropathic pain such as post-

herpetic neuralgia and minor aches and pains associated with 

arthritis, strains, and sprains [19]. A single high-dose local 

injection of capsaicin is also currently being investigated for 
controlling post-surgical and osteoarthritis pain[19]. 

 The ultrapotent TRPV1 agonist RTX has also been well-
studied and is currently clinically used to treat certain 
urological conditions such as bladder hyperactivity [21-25]. 
As a TRPV1 activator, RTX is known to be 20-fold more 
potent than capsaicin [4] and, similar to capsaicin, produces 
prolonged membrane depolarization of TRPV1-laden nerve 
fibers. The peripheral injection of RTX has been shown to 
prevent development of thermal and mechanical allodynia in 
inflammatory rat pain models [26-29].  

 Recently Binshtok et al. postulated that activation of the 
TRPV1 channel allows otherwise impermeant molecules 
such as QX-314, a bulky positively charged lidocaine 
derivative, to enter the nerve cells (Fig. 1). Indeed, in a rat 
sciatic nerve block model, the injection of QX-314 followed 
by capsaicin demonstrated an expected nociceptor-selective, 

long-lasting blockade while leaving motor impulse condu- 
ction intact. [30] Moreover, such an activation of TRPV1 
channels will lead to a predominantly nociceptor-selective 
blockade with experimental (amitriptyline or N-methyl 
amitriptyline) and clinically used (lidocaine and bupivacaine) 
LA agents [31]. 

 In addition, the narrow dosage range within which LAs 
such as lidocaine and bupivacaine can be safely administered 
without significant toxicity is one of the most severely 
limiting aspects of these drugs in clinical practice. For ins- 
tance, the dose of lidocaine that produces toxic effects is 
only several folds greater than the dose necessary to produce 
a therapeutic effect. The therapeutic ranges of capsaicin and 
RTX are known to be two and three orders of magnitude 
greater, respectively [32]. The combination of LAs with 
capsaicin allows lower concentration of LAs to achieve the 
desired effect and hence increases their safety margin. 
Nevertheless, whether the facilitation of LAs by TRPV1 
agonists is accompanied by proportionally increased cellular 
toxic effects has yet to be determined. 

 One clinically limiting aspect of these agents is the initial 
burning sensation when they are applied topically. The 
combined use of capsaicin with LA has the additional benefit 
of ‘anesthetizing’ the nerve first, preventing the burning 
sensation. Furthermore, at least in rats, the subcutaneous or 
sciatic perineural injection of high concentrations of cap- 
saicin (0.1%) or RTX (0.001%), administered with clinically 
used LAs like lidocaine or bupivacaine to awake animals, 
does not elicit any immediate behavioral changes suggestive 
of pain expected of the initial activation of TRPV1 by these 
agents (Gerner, P. unpublished results). 

 Similarly, other high-conductance nociceptive-selective 
nonspecific cation transducer channels could be used to 
produce nociceptive-selective local anesthesia.  

SODIUM CHANNELS 

 Each sodium channel consists of a large functional alpha-
subunit and one or two much smaller auxiliary beta-subunits. 
Subtypes of sodium channels arise from variation in the 

 

 

 

 

 

 

 

 

 

Fig. (1). Hypothesized mechanism of QX-314’s entry into the nerve. The activation of the TRPV1 channels opens the pore, allowing mole-

cules such as QX-314 enter the cell to block the sodium channel. 
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homologous alpha-subunit genes. The nine subtypes now 
known in mammals (Na(v)1.1 through 1.9) are differentially 
expressed in various tissues, which suggests their functional 
correlation. For example, multiple subtypes of sodium 
channels in the dorsal root ganglion (DRG) are believed to 
be involved in multiple events along the pain pathway such 
as transmission, signal amplification, and action potential 
electrogenesis. Nociceptors express several types of sodium 
channels including both TTX-sensitive (Na(v) 1.1, 1.6, 1.7 
and 1.3) and TTX-resistant (Na(v) 1.8 and 1.9) subtypes. 
Some of the sodium channels such as Na(v)1.8, Na(v)1.9, and 
Na(v) 1.7 are expressed exclusively on peripheral [33-35] but 
not vagal [36] nociceptors.  

 Currently the “hottest” target for nociceptive-specific 

blockade is the Na(v)1.7 channel, since this subtype deter- 

mines the ability of a nerve to transmit pain sensation [37]. 

 The importance of Na(v) 1.7 has become increasingly 

evident through genetic correlation of this channel with 

congenital abnormality of pain perception [38]. Loss-of-

function mutations of Na(v)1.7 are reported in patients with 

channelopathy-associated insensitivity, in which patients 

have isolated lack of sensory function for pain and smell 

[37]. On the other hand, several gain-of-function mutations 

of genes related to the regulation or function of Na(v)1.7, 

resulting in over-activity of this channel, are found in 

patients with two painful congenital disorders, erythermalgia 

(also termed erythermelalgia) and paroxysmal extreme pain 

disorder, congenital conditions whereby patients are afflicted 

by episodic severe pain attacks accompanied by cutaneous 

flushing [39-41]. Na(v)1.7 also appears to be involved in the 

development of inflammatory pain, as demonstrated in an 

animal study that showed inflammation-induced upregul- 

ation of Na(v)1.7 in the DRG [42]. Furthermore, a recent 

preclinical study has reported that ProTX-II, a Na(v)1.7-

selective antagonist from spider venom, prevented the pro- 

pagation of action potentials in small-diameter nociceptive 

fibers, while larger fibers remained intact [43]. The further 

identification of such a selective Na(v)1.7 blocker is an area 

of great interest.  

 Na(v)1.8 is expressed predominantly in small nociceptive 

neurons [34] and has been demonstrated to be the main 

source of sodium influx during action potential electro- 

genesis [44, 45]. Knock-out (KO) studies demonstrated that 

this channel also underlies the ability of nociceptive neurons 

to fire repetitively [46]. Accumulating evidence has shown 

the intimate relationship of Na(v)1.8 to generation of 

inflammatory and neuropathic pain [46-51]. The injection of 

complete Freund’s adjuvant or carageenan increased 

expression of Na(v)1.8 in the rat DRG. In mice, knocking 

down the Na(v)1.8 gene by antisense oligonucleotides 

attenuated the development of inflammatory hyperalgesia 

[52,53]. Currently A-803467, a Na(v)1.8-selective blocker, 

has been shown to attenuate mechanical allodynia in a dose-

dependent fashion in animal pain models including sciatic 

nerve injury, spinal nerve ligation, and chemically induced 

thermal allodynia and secondary allodynia [51, 54]. 

Ambroxol, a relatively selective blocker of Na(v)1.8. has also 

been shown to produce effective analgesia in inflammatory 

and neuropathic pain models in animals[55]. Another subtype, 

Na(v)1.9, is also found only in small DRG neurons [51, 56-

58]. Na(v)1.9 is thought to be responsible for a slow persistent 

sodium current with low threshold and activated over a wide 

range of voltage. This current is postulated to influence the 

subthreshold excitable properties of the mem- 

brane, which may explain the mechanism of sensitization by 

causing the membrane resting potential to fluctuate [46, 49, 

57, 59]. In addition, Na(v)1.9 KO mice failed to display 

inflammation-induced excitability or up-regulation of Na+ 

channels[60]. Subsequent introduction of cloned Na(v)1.9 

reinstituted this effect[60].  

 The differential effect on nociceptive-specific sodium 
channels may also underlie the analgesic effects of some 
anticonvulsants and antidepressants. For example, Lacos- 
amide is an anticonvulsant that also has Na(v)1.8-blocking 
properties and has been shown to be effective in treating 
neuropathic pain in preclinical studies[61]. 

 The restricted expression of sodium channels Nav1.7, 
Nav1.8, and Nav1.9 on peripheral nociceptors and the direct 
link of Nav1.7 to pain states in humans make them ideal 
targets for development of more effective drugs with fewer 
undesirable side effects. However, since specific blockers of 
sodium channels demonstrate low bioavailability, none of 
the existing compounds have proven suitable for clinical use. 
Recently demonstrated expression of TTX-resistant sodium 
channels on A-fibers of nodose vagal sensory neurons reduce 
the selectivity of these specific blockers to nociceptors [36]. 
Moreover, chronic pain disorders are multifactorial, and the 
efficacy of drugs is also greatly influenced by the up- and 
down-regulation of various sodium channel subtypes in the 
different stages of inflammatory and neuropathic pain [50, 
62-66]. 

 Therefore the approaches targeting sodium channel 
blockers specifically to nociceptive neurons are preferable.  

FUTURE STUDIES 

 Many compounds targeting specific sodium channel 
subtypes have been identified and are currently awaiting 
detailed testing in vivo in various models. Among them, the 
above-mentioned A-803467 appears promising in treating 
neuropathic and inflammatory pain. However, no clinical 
trials are currently underway using this agent (clinical- 
trials.gov). Lacosamide is now under phase 3 clinical trials 
for mainly neuropathic pain such as painful diabetic neuro- 
pathy, migraine, and post-herpetic neuralgia. Ralfinamide is 
also in phase 2 clinical trials for various neuropathic pain 
conditions.  

 Besides capsaicin and RTX, further interest in 
nociceptive-selective blockade may be explored among the 
members of TRP ion channel family agonists or antagonists. 
Given the suggested critical role of TRP channels in the pain 
pathways in both the central and peripheral nervous systems, 
the surge of interest in the TRP family as a target for the next 
generation of analgesic agents has led to the discovery of 
numerous TRP agonists and antagonists. Some of the 
clinically used local and inhalation anesthetic agents are now 
known to be TRPV1 and TRPA1 agonists, including lido- 
caine, tramadol, and isoflurane [67-69]. These agents may 
generate synergistic differential analgesic effects with other 
local or general anesthetics through mechanisms similar to 
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RTX and capsaicin and are potential candidates for future 
studies to achieve differential nerve block. However, one 
drawback is that manipulation of TRPV1 activity also affects 
its thermoregulatory function. It has been demonstrated in 
both human and animal studies that TRPV1 blockade can 
lead to hyperthermia in susceptible individuals [70, 71]. 
These results obviously pose significant challenges to the 
clinical use of TRPV1 antagonists. Nonetheless, these results 
are informative for future study of the role of TRPV1 
channel activation in thermoregulatory processes. Further 
research will hopefully identify other, more selective TRPV1 
antagonists that they interfere only with the nociceptive 
transmission while sparing other TRPV1-mediated activities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Sciatic nerve block with 0.2 ml of N-methyl amitriptyline 

at 0.125 %, alone or in combination with 0.05 % capsaicin (simul-

taneously applied/mixed or 10 min later), n=8 rats per group. Data 

are presented as mean ± SE. A. Motor Block Score (0-3): Motor 

function was assayed by a digital platform balance. 0 = no block (or 

baseline); 1 = minimal block; 2 = moderate block; 3 = complete 

block (force of 20 g or less). B. Superficial Nociceptive Block 

Score (0-3): Nociception was evaluated by the nocifensive with-

drawal reflex and vocalization to pinch of a skin fold. 3 = complete 

block, no nocifensive reaction or vocalization; 2 = moderate block, 

vocalization accompanied by slow withdrawal and flexion of the 

leg; 1 = minimal block, brisk flexion of the leg, with some sideways 

movement of the body or other escape response and loud vocaliza-

tion; 0 = baseline with no block and all nocifensive responses listed 

above. 

 Besides identifying drugs for pain-specific sodium 
channel subtypes and/or TRPV1 agonist/antagonists, and 
combining TRPV1 channel agonists with permanently 
charged LAs (Fig. 2), another future approach might be to 
combine TRPV1 channel agonists with specific positively 
charged sodium channel subtype antagonists to further 
maximize pain selectivity. The combination of a TRPV1 
agonist and LA is currently awaiting regulatory approval for 
clinical trials.  

 In summary, several approaches are currently being 

pursued in the development of agents for C-fiber-selective 

peripheral nerve blockade. A considerable amount of effort 

has been put into identification of compounds specific for 

sodium channel subtypes and TRP agonists as well as 

antagonists. An exciting new approach is combining TRPV1 

agonists with permanently charged large LA molecules, [31] 

selectively allowing these otherwise impermeable com- 

pounds only into C-fibers.  
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